HIGH-SPEED INTERCITY PASSENGER RAIL PROGRAM

The New England states’ have submitted coordinated applications for high-speed and intercity passenger rail grants under the Federal Railroad Administration’s (FRA) High-Speed Intercity Passenger Rail (HSIPR) program. These grant applications are part of a multi-year strategy to implement the Vision for New England High Speed and Intercity Passenger Rail Network that was collectively developed by each New England state’s Transportation Department. According to the Federal Railroad Administration FRA, at least four corridors in New England - the current Northeast Corridor, encompassing the coastal route through Connecticut, plus existing or envisioned lines linking Boston with Albany, N.Y., Montreal, and Portland, Maine - should be eligible to receive a share of the $8 billion in available HSPIR program grant funding.

These state grant applications should not be confused with those Amtrak identified improvements to the Northeast Corridor main line, from Boston to Washington, D.C., that require additional environmental review to be eligible for most HSIPR program grant awards.\(^1\) If it is determined, however, that a state project also requires further environmental review before receiving program funding, because of a connection to the North-

\(^1\) *Narrow rules are no excuse to withhold rail money*, December 21, 2009 Boston Globe Op-Ed. The Northeast Corridor Master Plan working group has identified some $10.25 billion in infrastructure projects needed to restore the Northeast corridor main line to a state of good repair, expand capacity and reduce trip times between major population centers. In 2010, the FRA is expected to lead a programmatic environmental impact statement (PEIS) for the Northeast Corridor main line to comply with the National Environmental Policy Act (NEPA) and to move the projects forward in the development process. The NEC Infrastructure and Operations Advisory Commission (NEC Commission) established under PRIIA and to be created by the FRA in 2010, will begin the scoping and other foundational work required for the NEPA process to move forward. This environmental review will include an evaluation of alternatives, potentially including alternative alignments that may be necessary to achieve 3-hour service on the North End of the Corridor between Boston and New York and, particularly, the need for additional capacity into and through Manhattan.

While not yet ripe for construction, these projects should qualify for grant funding under Track 3 - Service Planning Activities (“Track 3 - Planning”) - to establish future high-speed rail and intercity passenger rail projects and service development programs by assisting planning activities for applicants at an earlier stage of the development process. Track 3 - Planning grants give states the opportunity to complete the prerequisite engineering and other work necessary to submit applications under Tracks 1 and 2, so that applicants may be ready for potential future solicitations. And, Amtrak is working with individual states in the Northeast to advance ARRA high speed and intercity passenger rail grant applications for individual projects with “independent utility,” including the state-led efforts - more fully discussed in the body of this correspondence - to develop feeder corridors, such as the Springfield Line, the Downeaster route to Maine, and Vermont service that links to, or operates on, the Northeast Corridor. See *An Interim Assessment of Achieving Improved Trip Times on the Northeast Corridor*, Prepared by Amtrak Under Section 212(d) of the Passenger Rail Investment and Improvement Act of 2008, (October 21, 2009).
east Corridor main line, or for any reason, the FRA must be as flexible as possible in interpreting these requirements and in helping the states to comply with them.2

2 Aside from Amtrak’s maintenance spending, and some earlier Northeast Corridor improvements, there has been no, appreciable investment in high-speed and intercity passenger rail service. Congress created the HSIPR program to support significant governmental infrastructure investment in this rail service. The preliminary HSIPR program funding was contained in the American Recovery and Reinvestment Act of 2009, which placed a priority on short-term spending to promote an accelerated economic recovery, and provided through the Passenger Rail Investment and Improvement Act of 2008, which established three principal funding programs, the high-speed rail corridor development program (§501), the intercity passenger rail service corridor capital assistance program (§301), and the congestion program (§302) (a more detailed description appears in section II, infra). The FRA Administrator recently testified to that effect:

Until enactment of the Passenger Rail Investment and Improvement Act last October, there was no statutory role for States in the planning and implementation of intercity passenger rail except for the occasional one-off grant contained in FRA’s annual appropriation. Until February of this year, there was no real funding to go with this authorization. There is now a significant and pressing need to help the States develop and maintain the internal staff resources and capabilities to oversee the management of planning and program implementation of high-speed rail and to be effective negotiators and partners with the various stakeholders that will be essential to successful implementation. Over time, States have developed such resources for the highway and transit programs but rail is sufficiently different that it will take time and effort for many States to develop these skills for rail. ...[t]he Recovery Act has provided a stark contrast between the established highway and transit programs and the new high-speed rail initiative. States have a well established pipeline of highway and transit projects that have undergone years of planning, design and environmental review. Thus, when the opportunities were offered by the Recovery Act for additional funding, the States were able to turn to a list of highway and transit projects. While some States had undertaken planning and had some projects that could begin in the short-term, most States had not undertaken the development of a detailed service development plan with the accompanying service, or Tier 1 documentation required by the National Environmental Policy Act (NEPA) for the larger development of a high-speed rail corridor. ...[a]gain this is understandable. While the surface transportation legislation has over the last several decades provided States and regions funding for planning, this planning has been primarily focused on those programs – highway and transit – that offered the potential of a Federal funding partner at the end of the planning process. The States that are better prepared today are those that decided that improved passenger rail was so important to meeting the State’s future mobility needs that they invested substantial State funding in the planning for these new services. The challenge we face with the advent of the high-speed rail program is that there are many States playing catch-up. How can we bring them up to the point that they have a realistic high-speed program plan and implementation strategy so that they too can have the pipeline of rail projects like they have for other forms of transportation? Statement of Joseph C. Szabo, Federal Railroad Administrator, before the Subcommittee on Railroads, Pipelines and Hazardous Materials Committee on Transportation and Infrastructure, United States House of Representatives, (October 14, 2009) at p.6-7.

As a condition of receiving financial assistance under an award, grant recipients may be required to conduct certain environmental analyses and to prepare and submit to the FRA draft documents required under the National Environmental Policy Act (NEPA) and related statutes and regulations (including draft environmental assessments and proposed draft and final environmental impact statements). But as applied to the HSIPR program, with its four tracks and multiple authorizations, a rigid approach to NEPA compliance would serve to frustrate the congressional intent behind ARRA, PRIIA and the related DOT Appropriations Acts. Therefore, the FRA will allow applicants flexibility to complete the NEPA process in the most sensible way as applied to the applicant’s proposal. In instances where NEPA approval has not been secured at the time of grant award, grant recipients must assist the FRA in its compli-
I. INTRODUCTION

Congress enacted the Federal-Aid Highway Act of 1956 to assist in the development of the Interstate Highway System. Over time, and regardless of consistent federal funding, substantial economic and demographic growth has resulted in many parts of that system reaching capacity. Many sections of the Interstate System have either reached or surpassed their functional design life and are subjected to traffic volumes that exceed their design standards.3

Although state and local government highway officials have focused on highway and bridge rehabilitation projects - the resurfacing or reconstruction of existing highway lanes and bridges - rather than highway expansion projects over the last 15 years, operational performance has continued to deteriorate. According to the Department of Transportation (DOT), the estimated percentage of travel occurring under congested road conditions increased from 25 to 29 percent between 1997 and 2005.4 The costs of congestion have already increased more than 50 percent over the previous decade. In 2007, traffic congestion cost some $87.2 billion, with 4.2 billion hours of delay and 2.8 billion gallons of wasted fuel.5 And future projections confirm that intercity travel will increase and mobility will be constrained by our existing transportation capacity limitations.6
There is also a compelling need to reduce airport congestion nationwide. The Federal Aviation Administration forecasts that the U.S. commercial aviation industry will carry one billion passengers by 2021, increasing from approximately 741 million in 2008, further restricting passenger mobility and adding to the traffic congestion caused by those travelling to airports. Even with planned capacity improvements completed by 2025, air traffic will remain constrained at our nation’s major airports.

Moreover, highway and air travel generate significant levels of greenhouse gas (GHG) emissions. Of the amounts of the GHG emissions generated in the United States in 2005, 83 percent consisted of carbon dioxide from the combustion of fossil fuels such as coal, petroleum, and natural gas, with the transportation sector contributing approximately one-third of these emissions. Every gallon of gasoline burned produces about 20 pounds of carbon dioxide (CO$_2$) emissions, with high altitude GHG emissions having about three times the warming effect as ground-level emissions. The nitrogen oxides emitted in vehicle exhaust are known to exacerbate asthma and may increase susceptibility to infections.

These problems are particularly acute within New England, where the states share similar physical and infrastructure characteristics, creating common transportation policy concerns. The region is burdened with some of the oldest transportation infrastructure in the country. Age, accelerated wear and tear from acid rain and road salt, and our harsh climate have all contributed to deterioration throughout our transportation network. All six New England states are included among the top 15 as having the most structurally deficient and obsolete bridges in the country. The region’s highways are breaking down under traffic levels far beyond those originally anticipated by their planners and designers. Since 1990, our road traffic increased two to three times faster than our population growth. New England relies heavily on trucks for freight delivery - with the consequent highway wear and tear - and truck traffic is projected to increase 60 to 100

10 McKnight, James Stephenson, George Transportation in the 21st Century, Our Challenges and Opportunities, Institution of Mechanical Engineers, United Kingdom, 1999, p. 30.
percent by 2020. Air traffic will continue to exceed airport capacity along the high-density east coast corridor that includes New England.

All of these challenges result in continually worsening congestion, with transportation-related delays costing the region some $1.7 billion annually. With business leaders continually citing the quality of transportation infrastructure - and the ability to move both goods and people - as key factors in their location decisions, New England's commercial areas become less and less competitive every year.¹¹

Until the economy began its downturn, the region witnessed an increase in professional, service, and government-related jobs while the traditional manufacturing industry continued to decline. These industries depend on the timely transportation of individuals rather than materials and tangible products. With a large portion of New England’s economic output generated from these industries, moving employees efficiently has become as important as shipping freight to our economy.¹² Clearly, then, the six states must adapt to their increasingly mobile population and develop an integrated, regional transportation system.

Reducing highway and air traffic congestion requires a multi-pronged approach. Highways and local roads will remain the region’s primary mode of transportation for goods and people - there are some 11,628 miles of interstate and other major highways in New England.¹³ Air travel will remain dominant in the travel market involving trips of over 500 miles. Thus, increased roadway and air traffic capacity through the construction of new routes and additional lanes, along with expanding airports through runway reconstruction and other projects, are part of the solution, but increasing such capacity could also worsen or exacerbate the problem through additional vehicle and plane traffic. The circumstances require transportation officials to determine reasonable alternatives to both forms of travel.

It is widely acknowledged that high-speed and intercity rail can significantly reduce congestion, with the greatest demand existing within intercity corridors connecting large urban areas that experience significant highway and air traffic gridlock. In fact, the former CEO of American Airlines parent company described improvements to the Northeast

Corridor as one of the best ways to reduce aviation gridlock. For short- to medium-distance trips of 100 to 500 miles, enhanced passenger rail service can offer travel-time advantages over air and highway transportation. Air passengers are required to check in at airports at least one hour before departure time, and airports can be 30 to 45 minutes from downtown destinations, requiring travelers to use a car or cab service. Rail service generally extends from city center to city center, with downtown stations in most cities and little passenger check-in delay. Air passengers must also deal with late arrivals and departures, often dictated (in Boston) by minor changes to wind speed and direction. In March 2007, for instance, only 72 percent of all U.S. flights had on-time arrivals.

Diverting auto and air traffic to intercity passenger rail can also improve the environment by reducing car and plane generated greenhouse gas emissions and pollution. Fully or partially loaded rail coaches are more environmentally friendly than single vehicles. The average intercity passenger train produces 60 percent fewer CO$_2$ emissions per passenger-mile than the average auto and half the emissions of an airplane. Also, intercity passenger rail generates fewer emissions of other pollutants than car or plane travel. Finally, emissions-per-passenger-mile data likely understate the benefits of intercity passenger rail since they do not reflect rail’s ability to stimulate energy-efficient and pedestrian-friendly commercial and residential development projects.

Transit-oriented development is often associated with improving urban areas by reinforcing mixed-use housing, higher densities, and integrated modes of transport near rail stations. On a per-capita basis, suburban sprawl costs more, consumes more energy and generates more congestion than compact and well-planned urban development. Rail stations are magnets for development in downtown areas, while suburban station stops often makes intercity passenger rail more accessible than air travel. The land-use benefits associated with intercity passenger and commuter rail connections are therefore considered societal benefits, increasing benefits for both rail users and the general public.

17 Id.
Urban centers such as Hartford, Connecticut and Springfield and Holyoke, Massachusetts, often referred to as “gateway cities,” could benefit from connections to high-speed, intercity, and commuter rail service through real estate development or redevelopment projects in their downtown areas. Historically, these cities benefited from links to a large rail network that has mostly been ignored or abandoned over the last 50 years. In effect, most of New England benefited from a regional rail network in the 19th century. Hundreds of miles of track connected the states, with trains carrying people between cities, to the ocean, and to the country. Many of these tracks, or their rights-of-way, still exist.18

High-speed and intercity rail service availability could therefore stimulate the economy in a number of older cities throughout New England, while allowing the region to reduce its dependence on foreign oil and lessen its contributions to climate change. Investing in this type of transportation infrastructure, then, must be part of the multi-pronged approach to reducing highway and air traffic congestion. It makes particular sense to do so across the New England states, with their pre-existing rail network and densely-populated urban centers.

To further the development of an interstate high-speed and intercity passenger rail network as part of a larger, integrated, regional, transportation system, the New England states have jointly drafted and committed to a rail plan, the Vision for the New England High-Speed and Intercity Rail Network. Formulated in response to Congress’s appropriation of $8 billion for high-speed and intercity passenger rail within the American Recovery and Reinvestment Act of 2009, this Vision, or regional rail plan, shares Congress’ and the Administration’s goals - developing safe and efficient transportation modes to improve economic competitiveness and promote livable communities - by linking the region’s cities and towns to a connected rail network within the larger transportation system. The completed network will connect the region’s major cities with smaller towns and rural areas throughout New England, the Northeast, and to Montreal through a network of high-speed and intercity passenger rail routes. The plan describes the development of this network through the integration of a completed Northern New England High-Speed Rail Corridor with the Empire Corridor in New York and the existing High-Speed Rail service along the Northeast Corridor. It complements the broader, 2008 Northeast Governor’s Vision for Rail in the Northeast - developed through the Coalition of Northeastern Governors (CONEG) - to improve high-speed and conventional intercity passenger rail service on the network of corridors that links the 11 Northeast states and Washington, D.C.19

18 Id.

Since December 18, 1991, eleven high speed rail corridors have been congressionally authorized. Five corridors were authorized under the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) and six were authorized under the Transportation Equity
Under the regional rail plan, Connecticut, Massachusetts, and Vermont will develop corridor plans for the Boston to Springfield to New Haven and Boston to Montreal segments of the Northern New England High Speed Rail Corridor, using the Inland Route through Worcester and Springfield, Massachusetts. The states of Maine, New Hampshire, Act for the 21st Century (TEA-21). To date the Department of Transportation has designated ten of these corridors and numerous corridor extensions. Of the designated corridors, three were specifically named by Congress in law. The other seven were selected by the Secretary of Transportation in a competitive process, which in current law involves an evaluation of such factors as projected ridership, public benefits, and anticipated partnership participation of States, localities, and the freight railroads.

Amtrak's Northeast Corridor (NEC) main line is America's most highly-developed rail corridor, having benefited from over $4 billion in direct Federal funding under the Northeast Corridor Improvement Project that had its roots in the High-Speed Ground Transportation (HSGT) Act of 1965 and the railroad restructuring legislation of the mid-1970s. Development of the NEC began some 27 years prior to the first designations under the ISTEA high-speed rail grade crossing improvement program. By 1992, the NEC had already undergone extensive renewal and upgrading, and was already free of grade crossings south of New York and largely free of them to the north. Thus, there was no reason to “designate” it under what was essentially a grade crossing upgrading program. Accordingly, the NEC main line is not a "designated high-speed rail corridor." It is overseen by the FRA, owned by five separate entities, and hosts operations of nine passenger and seven freight railroads. Linking Boston, New York, Washington, and intermediate cities, the Northeast Corridor (NEC) rail network is the centerpiece of the transportation infrastructure that contributes to the economic vitality of the Northeast region. The NEC rail network (including the main line between Boston and Washington D.C. and the branch lines to Springfield, Albany, Harrisburg, and Richmond) is among the most heavily utilized rail lines in the world. The network links all the major cities of the Northeast; contains the nation's only high-speed intercity rail line; hosts dozens of commuter lines, and provides freight access to major ports and local industries. The network moves more than 259 million passengers and 14 million car miles of freight per year.

In October of 2000, the Transportation Secretary designated two new high-speed rail corridors and approved the extension of four corridors. One of the newly designated corridors was the Northern New England corridor, which has two lines, with one line running north from Boston, Massachusetts, to Montreal, Canada, and the second line running from Boston, Massachusetts, to Portland and Auburn, Maine. In December of 2004, section 154 of the Consolidated Appropriations Act called for an extension of the Northern New England High Speed Rail Corridor from Boston, MA, to Springfield, MA and Albany, NY, and from Springfield, MA, to New Haven, CT. From http://www.fra.dot.gov/us/content/203

The challenge is for all states, agencies and railroads to act collectively to support local development and the broader needs of the region in a complex political, financial and operating environment. The Passenger Rail Investment and Improvement Act of 2008 (PRIIA) established a mechanism for addressing these issues by providing for an NEC Infrastructure and Operations Advisory Commission. Membership includes the Northeast states, US DOT, Amtrak and non-voting representatives of the freight railroads. The Commission, which will be established by FRA in 2010, is charged with leading regional planning efforts, establishing guidelines for improving coordination among operators, and agreeing to equitable financing mechanisms and cost sharing formulas. The NEC Master Plan will provide the NEC Advisory Commission with information that helps to frame these coordination, planning and financing issues.

20 Corridor service can be defined as frequent service operated between major city pairs up to 500 miles apart. Corridor services are usually provided in U.S. Intercity travel markets where over 80 percent of all trips exceeding 100 miles in length are less than 500
Vermont and Massachusetts will develop corridor plans for the northern half of the Northern New England High Speed Rail Corridor, which extends from Boston to Portland and beyond and from Boston through New Hampshire and Vermont, terminating in Montreal. On the Northeast Corridor the states are collaborating with Amtrak and all the northeast states to make improvements to the existing high-speed rail line. Several proposals involve reroutes designed to make existing service more efficient while also extending service. The Northeast Corridor Infrastructure Master Plan will define the intercity and commuter rail projects and investment levels needed to improve reliability and quality of service between Boston and Washington.\(^{21}\)

The following specific projects, described within the regional rail plan, are expected to be advanced in the near term.

- Extending the *Ethan Allen* service (Amtrak) along Vermont’s Western Corridor to connect Burlington (the state’s largest city) and Bennington with Albany and New York City through the Empire Corridor, re-establishing a rail connection, abolished in 1953, to Burlington’s downtown rail station.

- Returning the *Vermonter* to its original route through western Massachusetts using the Knowledge Corridor, eliminating a 50 minute detour caused by inadequate infrastructure while restoring rail service to Greenfield and Northampton in Massachusetts. The Knowledge Corridor between Springfield, Massachusetts and White River Junction, Vermont will provide connections between the Boston to Springfield to New Haven and the Boston to Montreal legs of the Northern New England High Speed Rail Corridor.

- Installing double track and replacing bridges on the Springfield Line, which serves the cities of New Haven and Hartford, Connecticut and Springfield, Massachusetts and provide the foundation for the larger rail network, including development of the inland high-speed rail line between Boston and New York. The project will complement the *Vermonter* service project, and improve regional and interregional connections, i.e. providing these cities better connections to Boston, Massachusetts and New York City. It would allow commuter rail service between New Haven, Hartford and Springfield, connections with Bradley International Airport, several links to Amtrak intercity passenger rail service, and direct

\(^{21}\) Although the Northeast Corridor main line is not a “designated high-speed rail corridor”, it is eligible for intercity passenger rail funding under ARRA. Commuter service plans are typically driven by State or regional mobility goals, population and employment growth, congested highways, a desire for improved access to job markets, and a desire for improved quality of life. Individual commuter agency plans were merged with intercity and high-speed rail plans to create a unified service plan for the Northeast Corridor.
links to the existing Metro North and Shore Line East Commuter Rail in New Haven. As part of both the Northeast Corridor and the Northern New England High-Speed Rail Corridor, the Springfield Line benefits from the work previously completed by the state of Connecticut.

- Making infrastructure improvements along the Downeaster service, which operates on a route included in the Northern New England High Speed Rail Corridor between Portland, Maine and Boston, Massachusetts. Maine will also extend the service northward to Brunswick, enhancing access through to the mid-coast region. Infrastructure improvements should reduce the travel time between Boston and Portland to two hours and allow additional round trip service.

- Developing New Hampshire’s Capital Corridor service, creating accessible passenger rail service for the over one-half million people living in Southern New Hampshire. Stops will include Nashua, Bedford (with a connection to Manchester-Boston Regional Airport), Manchester, and Concord in New Hampshire, and Boston, Massachusetts. Since it is operating on one of the two Northern New England Corridor lines, the service will eventually extend north to White River Junction, Vermont and to Montreal.

- Providing the connection between Providence, Rhode Island and Boston, Massachusetts to TF Green Airport in Rhode Island through the Northeast Corridor, along with enhancing passenger service south of Providence. Rhode Island is working with Amtrak on additional capacity improvements along the Northeast Corridor in Southern Rhode Island to allow bi-directional overtakes for intercity passenger rail, benefiting all users of the corridor while providing for future commuter rail infrastructure at Kingston Station.

Additionally, the proposed North-South Rail Link is vital to the success of the Vision for the New England High-Speed and Intercity Rail Network. The North-South Rail Link would consist, in part, of two approximately 1.5 mile long rail tunnels beneath downtown Boston, Massachusetts. Currently, the Amtrak Downeaster line from Maine stops at Boston’s North Station, with no direct connection to the Northeast Corridor through Boston’s South Station. The tunnels would connect Amtrak's southern service to Washington, D.C. and its northern service to Portland, Maine by linking North and South Station by underground rail tunnel, while also connecting Boston's separate northern and

22 Because Pan Am Railways was no longer interested in either operating or hosting passenger rail along the NH Capital Corridor (NHCC) rail corridor, the New Hampshire Department of Transportation was unable to apply for $300 million in federal funding under the High-Speed Passenger Rail Program that would have helped make possible passenger rail service along 39 miles of upgraded tracks from Nashua to Concord. New Hampshire is discussing with Amtrak its interest in operating passenger rail along the NHCC, and the state has applied for $1.4 million in ARRA planning funds for the Capital Corridor project.
southern MBTA Commuter Rail terminals. Draft environmental studies for the project already have been completed.23

The North-South Rail Link would enhance the public benefits generated from all of the projects described above. And, while it is not presently part of any of the state’s coordinated grant applications, Massachusetts has separately requested federal funding to complete the environmental review and preliminary engineering process for this project.

These completed projects will form a series of multi-state rail lines throughout New England, linking our region to the greater rail network in the Northeast through connections in New York City, Albany and Montreal.24 Accordingly, in an effort to reach their goal of doubling NEC ridership by 2030, the New England states’ coordinated their applications for grant funding to support the projects through the FRA’s High-Speed Intercity Passenger Rail Program. Approving these grant applications would make the best use of state and federal funding as part of a collective response to a regional need.

II. THE HIGH-SPEED INTERCITY PASSENGER RAIL PROGRAM

As one of the Administration’s foremost transportation priorities, the High-Speed Intercity Passenger Rail Program helps to address the nation’s transportation challenges by investing in an efficient high-speed rail and intercity passenger rail network that connects communities across America. Congress established the framework for the program through the enactment of three separate bills.25

24 The Northeast Corridor rail network is the centerpiece of the transportation infrastructure that contributes to the economic vitality of the Northeast region ... n. 8, supra.

25 Intercity Passenger Rail is defined in statute as “rail passenger transportation except commuter rail passenger transportation” (49 U.S.C. 24102(4)); it subsumes both high-speed rail and conventional intercity passenger services. Commuter Rail is defined as “short-haul rail passenger transportation in metropolitan and suburban areas usually having reduced fare, multiple ride, and commuter tickets and morning and evening peak period operations” (49 U.S.C. 4102(3)); Federal funding for commuter rail projects is available from FTA programs. Intercity Passenger Rail Service consists of a group of one or more scheduled trains (roundtrips) that provide Intercity Passenger Rail transportation between bona fide travel markets (not constrained by State or jurisdictional boundaries), generally with similar quality and level-of-service specifications, within a common (but not necessarily exclusive or identical) set of identifiable geographic markets. An Intercity Passenger Rail service is considered “substantially changed” when its inherent nature or market focus is altered, or when its operating frequencies (roundtrips per day) are increased significantly; a substantial change in service may include adding short-distance corridor-type trains where only long-distance service operates, or service restoration where trains ceased to operate several years before. High-Speed Rail is intercity passenger rail service that “is reasonably expected to reach speeds of at least 110 mph” (49 U.S.C. 26106(b)(4)).
• Capital Assistance to States/Intercity Passenger Rail Service - In the FY 2008 DOT Appropriations Act, Congress established a new pilot program for joint Federal-State intercity passenger rail capital investment. Under this program, federal funding was made available to states on a competitive basis to fund up to 50 percent of the capital cost of improving intercity passenger rail service and to develop rail corridor planning grants.

• Passenger Rail Investment and Improvement Act of 2008 (PRIIA) - Enacted in October 2008, and along with reauthorizing Amtrak, PRIIA established three new competitive grant programs for funding high-speed and intercity passenger rail capital improvements, each of which, as authorized, require a 20 percent non-federal match:

 - Intercity Passenger Rail Service Corridor Capital Assistance (Section 301) - Under this section, the broadest of PRIIA’s three new funding programs, states, groups of states, interstate compacts, and public intercity passenger rail agencies established by one or more state(s) may apply for grants for capital improvements to benefit all types of intercity passenger rail service, including high-speed service. Amtrak may also participate through a cooperative agreement with a state(s). To be eligible for funding under this program, proposed projects must meet a number of requirements (e.g., inclusion in a state rail plan).

 - High-Speed Rail Corridor Development (Section 501) - Although similar in structure, criteria, and conditions to Section 301, eligibility for this program is restricted to projects intended to develop federally designated high-speed rail corridors for intercity passenger rail services that may reasonably be expected to reach speeds of at least 110 miles per hour (mph). Applicant eligibility under Section 501 is broadened from Section 301 to include Amtrak as well.

 - Congestion Grants (Section 302) - This program authorizes grants to states or to Amtrak (in cooperation with states) for facilities, infrastructure, and equipment for high-priority rail corridor projects to reduce congestion or facilitate intercity passenger rail ridership growth.

• American Recovery and Reinvestment Act of 2009 (ARRA) – The $8 billion in high-speed and intercity passenger rail funding under ARRA “jump starts” the widespread improvement of high-speed and intercity passenger rail service in the United States. The appropriation language references the conditions, i.e. state match requirement, included in Sections 301, 302, and 501 of PRIIA but states the “[f]ederal share of the costs for which a grant is made ...shall be, at the option of the recipient, up to 100 percent.” It also does not require that proposed projects be included in a state Rail Plan (and it excludes the costs of preparing such plans from eligibility for ARRA funding).

While Congress appropriated a total of $8 billion through ARRA under three Intercity Passenger Rail capital investment programs authorized by the PRIIA: Section 501(High-Speed Rail Corridor Development), Section 301 (Intercity Passenger Rail Service Corridor Capital Assistance), and Section 302(Congestion Grants), it left the mix of funding
among the three PRIIA programs to the discretion of the Secretary of Transportation. As described in the DOT’s initial high-speed rail plan document (see note12, infra) the FRA will not allocate funding among the three PRIIA programs in advance, but will cumulate the amounts under each PRIIA section from the funding sources identified in the selected applications, subject to the overall $8 billion ARRA limit. In addition to the ARRA appropriation for high-speed and intercity passenger rail, grants are available for up to $9,540,500 for intercity passenger rail planning activities, and at least $82,352,573 in FD/construction funding appropriated under the FY 2008/2009 DOT Appropriations Acts.26

Following enactment of ARRA, the President released a FY 2010 budget outline that proposed $1 billion in additional funding for each of the next five years for the development of high-speed rail throughout the United States.27

As required by ARRA, the Administration is in the process of drafting its national plan for high-speed passenger trains.28 The initial document published as part of that plan in April of 2009, the Vision for High-Speed Rail, includes a long-term strategy to build an efficient, high-speed passenger rail network of 100- to 600-mile intercity corridors, as part of a modernized transportation system. The foundation for that “network” comes from investing in intercity rail infrastructure, equipment, and intermodal connections, and starts with the $8 billion in state grants provided under ARRA. As described, the short-term investment strategy consists of: (1) advancing new express high-speed corridor services (operating speeds above 150 mph on primarily dedicated track) in select corridors of 200-600 miles; (2) developing emerging and regional high-speed corridor services (operating speeds up to 90-110 mph and 110-150 mph respectively, on shared and dedicated track) in corridors of 100-500 miles; and (3) upgrading reliability and service on conventional intercity rail services (operating speeds up to 79-90 mph).29

26 A total of $90 million was appropriated under the FY 2009 DOT Appropriations Act to remain available and unexpended under the heading of Capital Assistance to States/Intercity Passenger Service, of which no more than 10 percent, or $9 million, may be made available for planning activities. In addition, a total of $540,500 in planning funding, and at least $1,352,573 in FD/construction funding also remained available until expended following the award of grants under the FY 2008 Capital Assistance to States/Intercity Passenger Service program.

27 Congress recently increased this amount to $2.5 billion for grant money to support high-speed rail within omnibus spending legislation, HR 3288. The conference report was adopted by the House on December 10 and the Senate on December 12, 2009, with final action pending before the President as of the completion of this memorandum.

29 The Vision for High-Speed Rail assists with the implementation of this program, envisioning a collaborative effort among the federal and state government, railroads, and other stakeholders to help transform America’s transportation system through a national network of high-speed rail corridors.
Accordingly, the FRA issued High-Speed Intercity Passenger Rail Program Guidance and Application Forms outlining the application requirements for obtaining grant funding for high-speed rail projects made available through ARRA and the DOT Appropriations Acts of FY 2008 and FY 2009. The FRA received 259 final applications from more than 34 states requesting approximately $57 billion for projects to improve existing intercity passenger rail service and to further develop high-speed rail corridor programs. In October of 2009, the FRA announced that awards will be made in the winter of 2009/2010 and that “selections will be merit-based and will reflect President Obama’s vision to remake America’s transportation landscape.”

III. GRANT REVIEW AND SELECTION

The FRA guidance provides that grant applications will be evaluated and selected on how well the project or corridor program contributes to economic recovery efforts by creating and/or saving jobs, advances the President’s strategic transportation goals to ensure safe and efficient transportation choices, builds a foundation for economic competitiveness, promotes energy efficiency and environmental quality, supports interconnected livable communities, and involves multi-state cooperation and partnership.30

New England falls within the Northeast Megalopolis, a group of metropolitan areas in the northeastern United States. Taking into account the adjacent localities as well as the main cities, the area stretching from the Canadian border in Maine to the suburbs of Washington, D.C. is basically a contiguously inhabited corridor with a population of 55 million (living on less than 2% of the nation’s land).31 The region has three global cities (New York City, Washington and Boston), two developing global cities (Philadelphia and Baltimore), and four of the world's 100 largest metropolitan areas (New York, Boston, Philadelphia, and Baltimore-Washington). Over the next generation, the region is expected to add 18 million new residents.

The Northeast Megalopolis hosts an enormous amount of business and economic activity. With 17% of the United States population and a $2 trillion economy, the Northeast was reported by the Wall Street Journal in 2008 to be the world’s second largest mega-region (behind only greater Tokyo). The region accounts for 20% of the U.S. Gross Domestic Product. Were the region an independent country, it would represent the fifth largest economy in the world. The region is home to the New York Stock Exchange and

31 Jean Gottmann, Megalopolis: the Urbanized Northeastern Seaboard of the United States, (1961). Other cities within the megalopolis include Boston, Worcester and Springfield in Massachusetts; Manchester, New Hampshire; Providence, Rhode Island; Bridgeport, Hartford, New Haven and Stamford, Connecticut; New York City; Camden, Jersey City and Newark, New Jersey; Philadelphia, Pennsylvania; Wilmington, Delaware; Baltimore, Maryland; and Washington, D.C.
NASDAQ, the White House and United States Capitol, the UN Headquarters, the headquarters of ABC, NBC, CBS, FOX, ESPN, the New York Times Company, and the Washington Post. The headquarters of many major financial companies are located within the region, which is home to 54 of the Fortune Global 500 companies. The Northeast is also the center of the hedge fund industry, with 47.9% of $2.48 trillion of hedge fund assets being managed in its cities and suburbs.\(^{32}\)

The Northeast Corridor rail network contains the nation’s premier passenger rail system and contributes mightily to the economic scale in the Northeast region. The rail network - consisting of the Boston to Washington main line and branch lines to Maine, New Hampshire, Vermont, upstate New York, Pennsylvania, Canada, and states south and west – supports a mix of intercity, commuter, long distance and regional freight services on rights-of-way that are owned by Amtrak, states and freight railroads. It is among the most heavily utilized rail lines in the world. This rail network links all the major cities of the Northeast; contains the nation’s only high-speed intercity rail line; hosts dozens of commuter lines, and provides freight access to major ports and local industries. The NEC rail network moves more than 259 million passengers per year and is the most heavily traveled passenger rail corridor in the United States by ridership and service frequency.\(^{33}\)

2,500 trains (including high-speed, regional and long-distance intercity service, commuter and freight trains) operate over the network daily carrying 14 million intercity passengers – 10.8 million on the main line and 3.5 million on connecting branch lines.\(^{34}\) Passenger rail service into midtown Manhattan, which includes both commuter and intercity rail, operates on the NEC rail network through the trans-Hudson North River Tunnels, and is anchored by Pennsylvania Station in New York, the central hub of the Northeast Corridor main line and the busiest passenger rail station in the United States.\(^{35}\)

As described in the regional rail plan (and with much greater detail in each grant application) the states’ will collectively use grant funding to advance projects that link into the NEC’s main line with new or additional rail service, broadening the reach of the entire rail network in the region. Many of the state-sponsored routes will operate on both an NEC branch line and a portion of the main line between Boston and Washington. Proposals for new and expanded rail services become more practical financially when they will link to, or operate over, the NEC main line. This allows the new services to tap into

\(^{32}\) See Regional Plan Association, America 2050: A Prospectus, New York: September 2006; hedgefundintelligence.com. According to Gottmann, the area "provides the whole of America with so many essential services, of the sort a community used to obtain in its 'downtown' section, that it may well deserve the nickname of Main Street of the Nation."

\(^{33}\) Note 8, supra.

\(^{35}\) Northeast Corridor Infrastructure Master Plan (Draft), October 23, 2009.
larger core markets while simultaneously extending their reach to outlying areas.36 Thus, the network described in the regional rail plan provides satellite corridors and feeder lines that serve outlying areas of the region with the opportunity to link into the NEC main line and expand their market reach, making these regional rail lines more feasible economically.37

Furthermore, a report by the Brookings Institution opines that “metropolitan areas within 500 miles of one another should be the targets for a reinvigorated rail network that expands options, mitigates the growth in highway traffic, and relieves congestion in crowded airports - particularly along the coasts.”38 The Government Accountability Office also determined that “[h]igh speed rail is more likely to attract riders in densely and highly populated corridors, especially where current transportation facilities, such as highways or airports, are congested.”39 The population density within the Northeast Megalopolis equals 931 people per square mile, compared to the nation’s average of 80 people per square mile.40 Every project or initiative described in the regional rail plan and/or grant application is therefore part of or closely connected to densely populated corridors experiencing significant congestion.

Moreover, every state on the main NEC line has relied on the draft Northeast Corridor Infrastructure Master Plan to identify specific track, bridge, tunnel and station projects that improve reliability and expand capacity for existing service in addition to new intercity service connecting to the NEC. And, the Northeastern Governors have identified some of the major components necessary for the rail network in the northeast to provide its maximum public benefit and generate the greatest return on public investment, including, but not limited to:

- the Downeaster linking Boston to Portland, Maine and its proposed extension to Brunswick, Maine;

- the Boston-Montreal Corridor, the proposed new service linking Boston to Concord, New Hampshire and future service to Montreal, Canada;

36 Id.

37 Id.

39 GAO, High Speed Passenger Rail: Developing Viable High Speed Rail Projects under the Recovery Act and Beyond, GAO-10-162T (Washington, D.C. October 14, 2009).

40 John Rennie Short, Liquid City: Megalopolis and the Contemporary Northeast, (Washington, D.C., Resources for the Future, 2007), p. 23.
- Vermont’s Western Corridor connecting Burlington, Rutland and Bennington with Albany and New York City via the Empire Corridor;

- the Knowledge Corridor, linking Connecticut River Valley communities between Springfield, Massachusetts and White River Junction, Vermont with the Boston-New Haven and the Boston-Montreal segments of the Northern New England High Speed Rail Corridor, with connection to the Empire Corridor;

- the Springfield to New Haven corridor which links the Knowledge Corridor and interior Connecticut communities to the cities along the entire Northeast Corridor; and

- improved service between Boston to Providence to New Haven, with additional third track improvements to reduce bottlenecks among passenger trains in Rhode Island.\(^{41}\)

Thus, the Northeast Governors specifically support the projects described within the New England Governors’ regional rail plan and their coordinated applications for high-speed and intercity rail grants as crucial to the northeast’s rail network reaching its full potential, as building on the existing regional partnerships and capital investments, and as “consistent with our shared regional vision for an integrated network of intercity passenger rail corridors.”\(^{42}\)

Lastly, and further indicating collaboration, the Governors formed a regional Northeast Rail Network Task Force through CONEG as the forum responsible for implementing the multi-state coordination of any future applications for funding under the High Speed Intercity Passenger Rail Program.

In short, no other region has the opportunity available to New England, through our location within the Northeast Megalopolis and existing rail network, links to the NEC, and established regional and interstate cooperation, to increase both intercity passenger rail and high-speed rail ridership, stimulate the economy, reduce pollution, and maximize the public benefits from state and federal expenditures. As described above, the six states have adopted initiatives that clearly satisfy the FRA’s evaluation criteria for awarding grant funding under the High-Speed and Intercity Passenger Rail Program.\(^{43}\) They have

\(^{42}\) *Northeast Governors’ Letter to Secretary of Transportation Raymond LaHood*, (August 31, 2009), p. 3.

\(^{43}\) For example, the Connecticut Department of Transportation funded a feasibility study for a proposed rail line from New Haven to Springfield, Massachusetts, part of the broader Springfield line initiative previously referenced in this document. The Urban Land Institute found that within the first 10 years of operation, the area served by the line would experience $152 million in economic activity, result in 600 construction related jobs and 250 permanent positions. The rail service would promote economic growth in both
created a long-term strategy to build an efficient, high-speed and intercity passenger rail network by investing in intercity rail infrastructure, equipment, and intermodal connections. Their short-term investment strategy meets many of the Administration’s objectives, outlined in its *Vision for High-Speed and Intercity Rail*, by advancing new express high-speed corridor services, developing emerging and regional high-speed corridor services, and upgrading reliability and service on conventional intercity rail services.

The states’ rail plans are based on the efficiency of high-speed and intercity passenger rail service and its potential to support economic growth within cities and towns throughout New England. When completed, these initiatives will further integrate the New England states with each other, the New England region with the Northeast, and the Northeast megalopolis with the rest of the country and Canada.

IV. Conclusion

A major deficiency in our national transportation system is the absence of adequate high-speed and intercity passenger rail service. This service offers a safe, efficient and convenient alternative to highway and road use that promotes economic competitiveness and a cleaner environment. Despite wide acknowledgment that it can appreciably reduce surface transportation congestion, decrease our dependence on oil for gasoline and diesel fuel production, and reduce greenhouse gas (carbon dioxide) emissions, high-speed passenger rail service in the United States is basically non-existent, with intercity passenger rail service far from reaching its full potential – particularly when compared to other major industrialized nations. Moreover, the United States invests only a fraction of what many European and Asian countries have invested in the development of high-speed rail operations. A high-speed and intercity passenger rail network, as part of a broader, integrated transportation system, is necessary in our country and essential for New England. The region’s ability to sustain and enhance its economic growth and remain competitive depends on the further development of this rail service.

Connecticut and Massachusetts, would reduce highway and airport congestion and reduce carbon-based air pollution through reduced motor vehicle traffic. See “Working Together: The Importance of the New England States Developing a Regional Transportation Strategy,” at p.12. And, as previously described, the line would complement the Vermonter Service project, improve regional and interregional connections, i.e. giving cities on the line better connections to Boston and New York, while laying the foundation for the larger rail network, including the inland high-speed rail line between Boston and New York. Lastly, the project benefits from previous work conducted by Connecticut.

44 Another is insufficient revenue sources to fund necessary transportation infrastructure maintenance, repair and expansion. See the *Report of the National Surface Transportation Policy and Revenue Study Commission, Transportation for Tomorrow*, (December, 2007).